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Abstract. Bidirectional incremental evolution (BIE) has been proposed
as a technique to overcome the ”stalling” effect in evolvable hardware ap-
plications. However preliminary results show perceptible dependence of
performance of BIE and quality of evaluated circuit on assembling strat-
egy applied during reverse stage of incremental evolution. The purpose
of this paper is to develop assembling strategy that will assist BIE to
produce relatively optimal solution with minimal computational effort
(e.g. the minimal number of generations).

1 Introduction

For almost a decade evolvable hardware (EHW) has been limited to evolution
of relatively small logic circuits [1], [2], [3]. The solution of scalability problem
will open the possibility to use evolvable hardware technique for real-world ap-
plications.

Recently a number of techniques have been developed to overcome this prob-
lem. Some of them are focused on speeding up the genetic algorithm computa-
tions using principles of parallelism [4], [5], [6]. Other approaches to the problem
have used variable length chromosomes [7], function-level evolution [8], [9], auto-
matically defined functions [10]. Further, a divide-and-conquer approach (known
also as an increased complexity evolution) has been introduced [11], [12], [13],
[14]. The basic idea of this approach is to split problems into sub-problems and
evolve each sub-problem separately. The principle of this approach is very similar
to incremental evolution introduced to solve complex tasks using evolutionary
processes [15], [16], [17]. In incremental evolution approach the complexity of
evolved tasks increases with evolution. This allows to reduce the computational
effort to solve the task and overcome the ”stalling” effect in evolution [18], [16].
The approach can successfully evolve relatively large circuits if there is human
participation at the decomposition stage. The final solution is unlikely optimal
because it is assembled from separately evolved logic circuits. Bidirectional In-
cremental Evolution (BIE) allows to eliminate these two drawbacks [19]. In BIE
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approach the EHW-oriented decomposition has been introduced to provide auto-
matic decomposition of circuits and perform direct incremental evolution (DIE).
The optimisation of obtained solution has been also carried out during reverse
incremental evolution (RIE), where the sub-tasks are step-by-step assembled
and further optimised using evolutionary process. Although larger circuits have
been evolved using BIE with significant reduction in the evolution duration, the
assemble strategies during RIE have not been considered in detail. The use of
correct assembling technique is very important because it can significantly influ-
ence on both duration of evolution and quality of evolved circuits. This paper is
devoted to analysis of assembling strategies during RIE.

2 Bidirectional incremental evolution

The bidirectional incremental evolution contains 2 main evolutionary processes:
(1) Direct Incremental Evolution (DIE); (2) Reverse Incremental Evolution (RIE).

2.1 Direct incremental evolution (DIE)

The main purpose of DIE is to obtain a fully functional solution of given task.
This is achieved by decomposition of complex task to certain set of sub-tasks
of reduced complexity when the stalling effect takes place [19]. Thus BIE ap-
proach guaranties that at the end of DIE stage of evolutionary process the fully
functional solution is found.

An example of BIE is given in Fig.1. In this example DIE has been com-
pleted in two main decomposition steps. The DIE always starts with evolution
of initial complex circuit S0. Once the stalling effect has appeared, this circuit is
decomposed into three smaller sub-circuits (see Step 1, Fig.1). The sub-circuits
S1 and S2 are obtained as a result of Shannon’s decomposition and sub-circuit
S3 is the left part of the circuit S0. The evolution of the sub-circuits S1 and S3

has been completed but another EHW-oriented decomposition (Step 2 in Fig.1)
is required to finish evolution of the sub-circuit S2. During this step the sub-
circuit S2 is decomposed into another three sub-circuits using both output and
Shannon’s decompositions.

2.2 Reverse incremental evolution (RIE)

The solution of the initial complex task is usually found during the DIE. With
relation to the EHW the result of DIE is a set of combinational logic circuits.
This set implements the set of logic functions or sub-tasks. These sub-tasks are
defined during EHW-oriented decomposition. The design that implements the
initial complex logic function could be easily achieved by joining all evolved
sub-circuits together. The main disadvantage of this approach is that obtained
complex circuit is far from the optimal solution. It happens because the evolution
during DIE is performed separately for each sub-circuit. Usually there exist some
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Fig. 1. An example of evolutionary process that may take place during DIE.

common parts between different sub-circuits. To overcome this problem further
reverse incremental evolution of assembled circuits can be performed.

During RIE the evolution towards optimised circuit is carried out and the
most important role during this stage is played by assembling process. At this
stage the logic circuits are assembled back and further optimised using evolu-
tionary process. This process consists of three assembling sub-processes:

1. Assembling process at RIE level;
2. Assembling process at decomposition level;
3. Assembling process at chromosome level.
Assembling strategy at RIE level defines how many logic circuits can be

assembled at once in order to produce successful and fast evolution. For example,
sub-circuits S1, S2 and S3 can be assembled together at once (Fig.2.B). From
another point of view the evolution of sub-circuits S1 and S2 can be carried
out as first step and only then the combined evolution of S1, S2 and S3 can be
considered.

The type of the decomposition used during DIE determines the way how the
sub-circuits are linked together into a larger circuit during RIE. Such decom-
position dependent circuit linkage is performed during the second assembling
sub-process. For example, sub-circuits S5 and S6 shown in Fig.1 can be merged
using a set of multiplexors because they has been created during DIE as the
result of Shannon’s decomposition of S2. Next, S4 and S5−6 can be linked to-
gether. No additional sub-circuits are necessary at this step because the output
decomposition has been used.

The way how the logic gates of sub-circuits are assembled together into one
chromosome is considered during third assembling sub-process. This defines the
positions of logic gates in the assembled chromosome. Since the new chromosome
is built from several separate circuits the result of this linkage must be the
combinational logic circuit.

This paper concentrates on the extrinsic EHW proposed in [9], [20]. The
chromosome representation of circuit is shown in Fig.3. The circuit is described
by set of logic gates and the circuit output genes. Each logic gate is defined by
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Fig. 2. Assembling strategies in RIE. There are two possible schemes of the evolution-
ary process RIE according to the decompositions shown in Fig.1, where MUX is the
set of multiplexors.
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Fig. 3. Generation of new chromosome from 2 sub-circuits created as the result of
Shannon’s decomposition by input x2, where R is a redundant randomly generated
logic gate. Inputs and gates are sequentially encoded in the same numeric space.



the following genes: cell type, number of inputs, inputs (e.g. connectivity with
other logic gates and circuit inputs).

3 Assembling processes

In this section we will consider in detail specific futures of all assembling processes
mentioned in previous section.

3.1 Assembling strategies at RIE level

The success of evolutionary process is entirely depends on how the evolutionary
process towards optimised system can be carried out. From this point of view it
is important to consider how the circuits are linked to each other during RIE.
We define two basic linkage strategies:

1. Step-by-step circuit linkage.
2. Fast circuit linkage.
The idea of step-by-step linkage is to assemble only two sub-circuits at once

and perform evolutionary process under assembled circuit. Step-by-step linkage
allows gradually increase the complexity of the circuit and optimise it at the
early stages of evolution. This process is illustrated in Fig. 2.A. A large number of
evolutionary processes are used in order to synthesise required circuit. But these
evolutionary processes are carried out under the relatively easy tasks. As the
result relatively small number of generations is required to successfully complete
their evolution. Therefore, they require less computational efforts. For example,
let us consider BIE shown in Fig.1. There are 3 sub-circuits that have been
generated during Step 2. The step-by-step circuit linkage at Step 2 involves two
evolutionary processes. First, the circuit S5−6 assembled from sub-circuits S5 and
S6 is evolved. Then the sub-circuit S4 is added to already optimised S5−6 and
evolutionary process is carried out again for S2 circuit. Next optimised circuit S2

is assembled with S1 and optimisation of result circuit S1−2 is carried out. The
linkage of S1−2 and S3 to S0 finalises the Step 1 (see Fig.1) and final evolution
of entire circuit S0 is performed.

The idea of the fast circuit linkage is to evolve the assembled circuit without
intermediate steps. For instance, the optimisation process shown in Fig.2.B is
performed just in two steps. In this case the number of optimisation sub-tasks is
two times less, but the evolution will be undertaken under more complex tasks
in comparison with step-by-step circuit linkage and require more computational
effort to optimise every task.

3.2 Circuit linkage at the decomposition level

There is one global difference between output and Shannon’s decompositions.
The circuits evolved using output decomposition are independent from each
other. This means that they do not require any additional ”linkage” sub-circuit
in order to obtain a fully functional solution of assembled circuit (Fig.4.A).
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Fig. 4. Circuit linkage at the decomposition level, where Y , Y S1 and Y S2 are the
outputs of the sub-circuits S0, S1 and S2 respectively.

Shannon’s decomposition always produces a pair of logic circuits. Each of
these circuits is fully functional only for particular part of input-output combi-
nation matrix of initial circuit. As the result, a set of multiplexors is required to
join the outputs of these circuits (Fig.4.B). The number of multiplexors is equal
to the number of outputs in the circuits to be linked. For example, the logic
circuit shown in Fig.4.B is generated using 3 multiplexors because each sub-
circuit has 3 outputs. The implementation of the linkage circuit depends on the
chosen functional set of logic gates. Thus, if the multiplexer is included into the
functional set, the ”linkage” circuit can be represented using multiplexors only.
Otherwise multiplexer could be replaced by 4 primitive active logic gates. A set
of multiplexors could share one NOT-gate as it is shown in Fig.4.C. Thus, in this
example only 10 primitive active gates are needed to represent 3 multiplexors.

3.3 Assembling strategies at the chromosome level

Logic gates can be assembled differently inside chromosome. For example, in
[19] the sequential chromosome linkage has been considered. In this case all logic
gates of the sub-circuit S1 are placed at the most left position of the newly
generated chromosome. Then all logic gates of the sub-circuit S2 are placed just
next to the logic gates of the sub-circuit S1 and so on. The additional linkage
circuit is placed at the most right position of the chromosome (see Fig.3.A).



The process of assembling one chromosome from 2 sub-circuits using dis-
tributed chromosome linkage is shown in Fig.3.B. The logic gates from the sub-
circuits S1 and S2 are permutated in such way that the least left gates from
the both sub-circuits are placed at the least left positions of the newly gener-
ated chromosome. The number of randomly generated cells is defined by given
percentage of redundant logic gates in the circuit.

For both sequential and distributed chromosome linkages the number of cells
CNEW in newly generated chromosome is defined according to the following
formula:

CNEW =
∑

k
1Ci+CMUX

r ,

where Ci is the number of active logic gates in i-th circuit, CMUX is the number
of logic gates required for special linkage circuit, k is the number of sub-circuits to
be linked, r is the redundancy rate. The redundancy rate defines the ratio of the
number of redundant logic gates to the total number of logic gates in the circuit
[21]. The redundancy rate is fixed for all sub-circuits to be assembled. If the
multiplexer is required it is placed at the least right position of the chromosome.
If the chosen functional set of logic gates includes only primitive active gates,
every multiplexer is replaced by 3 or 4 primitive logic gates as shown in Fig.4.C.

4 Experimental results

The purpose of our experiments is to investigate how the assembling strategy
can influence on the algorithm performance. In order to do so 3 functions from
standard benchmark library have been used: mult3.pla, m1.pla and squar5.pla.
The functions have been chosen in a such way that the same experiments were
performed under circuits with relatively various complexity and structure. The
complexity of circuits has been considered in terms of the number of inputs
and outputs. Thus, 3-bit multiplier (mult3.pla) has 6 inputs and 6 outputs. At
the same time, m1 function (m1.pla) has 5 inputs and 12 outputs and squar5
function (squar5.pla) has 5 inputs and 8 outputs.

The initial data for the experiments are given in Table 1. The rudimentary
(1+λ) evolutionary strategy has been used [9]. Any type of genes in chromosome
genotype allowed to be changed with constant gene mutation probability. The
functional set of logic gates contains {AND, OR, EXOR, NOT}. Each function
has been successfully evolved at least 100 times. One of the noticeable features
of the BIE is that it guaranties to evolve fully functional solution. Therefore,
after each run of evolutionary algorithm the fully functional solution has been
obtained. The obtained experimental results are summarised in Table 2. The
analysis of results shows that it is more difficult to evolve m1 function rather
then mult3 and squar5. It can be seen that the slowest strategy is A (combination
of Sequential and Step-by-step assembling strategies) for all 3 circuits.

Let us consider the average number of active logic gates in final circuits that
have been evolved. Best results were achieved by strategies A and C and the



Table 1. Initial data, where ηfc is the limitation of number of generations after last
change of fitness function, # is ”the number of ...”

Circuit mult3 m1 squar5

Max # rows 1 1 1

Max # columns for DIE 40 50 40

Levels back for DIE 40 50 40

Max # of inputs in the logic gate 2 2 2

Population size 5 5 5

# generations for DIE 100000 100000 100000

# generations for RIE 500000 500000 500000

ηfc for initial system evolution 14000 14000 14000

ηfc for DIE with γ(F1) [20] 22000 22000 22000

ηfc for DIE with γ(F1 + F2) [20] 7000 7000 7000

ηfc for RIE 45000 45000 45000

# successful runs of BIE 100 100 100

Cell mutation rate 5% 5% 5%

worst - by strategy B (Table 2). However strategy A performed slower then
strategy C although the quality of optimisation was the same.

Therefore, based on the experimental results one may conclude that combi-
nation of the step-by-step circuit linkage and distributed chromosome linkage
allows to obtain the most optimal solution with minimal computational effort in
terms of the number of generations used.

5 Conclusions and future work

This paper describes the evolutionary design of combinational logic circuits in
terms of use of different assembling strategies in bidirectional incremental evolu-
tion. The distinctive feature of the algorithm is that it guaranties the evolution
of fully functional circuit. We have introduced distributed assembling strategy,
which allows us not only to assemble logic circuits with random genes into one
chromosome but to make sure that the logic gates from all sub-circuits par-
ticipate equally in evolution. We have also proposed step-by-step assembling
strategy at decomposition level that allow us to optimise small sub-circuits on
early stages of evolution when the performance of BIE does not seriously degrade
because of complexity of the circuit. These two aspects allow us to significantly
improve the quality of evolved circuits with minimal amount of computational
efforts.

We have investigated several assembling strategies at both RIE and chromo-
some levels. Analysis of experimental results allow us to make following conclu-
sions:

1. Different logic functions behave similarly for different linkage strategies.
2. The sequential chromosome linkage reduces the quality of optimisation

when the fast circuit linkage is used. When the step-by-step circuit linkage is
used, it also reduces performance of RIE.



Table 2. Experimental results, where Avg. No. is the average number, Min. No. is the
minimal number, n is the number of inputs, m is the number of outputs, s-b-s and fast
is the step-by-step and the fast circuit linkage respectively.

Strategy A B C D
Circuit Assembling at chromosome level Sequential Distributed

(n, m) Assembling at RIE level s-b-s fast s-b-s fast

Avg. No. of generations (BIE) 487000 361000 545000 368000
mult3 Avg. No. of generations during RIE 329000 197000 346000 173000
(6, 6) Avg. No. of gates in evolved circuit 46 52 46 51

Min. No. of gates found 37 35 34 35

Avg. No. of generations (BIE) 788000 403000 766000 460000
m1 Avg. No. of generations during RIE 577000 196000 511000 207000
(5, 12) Avg. No. of gates in evolved circuit 67 77 64 81

Min. No. of gates found 61 68 49 69

Avg. No. of generations (BIE) 530000 282000 484000 295000
squar5 Avg. No. of generations during RIE 407000 148000 328000 141000
(5, 8) Avg. No. of gates in evolved circuit 39 50 39 48

Min. No. of gates found 34 34 29 32

3. The step-by-step circuit linkage and distributed chromosome linkage pro-
vides the best synthesis and optimisation of combinational logic functions. How-
ever, if the better performance is required, the fast circuit linkage and and dis-
tributed chromosome linkage can be recommended as the most cost-effective
technique.

So we can conclude that the use of correct assembling strategy is very im-
portant in implementation of BIE.

A great deal of further work could be done in the area. Automatic control of
duration of evolutionary process could be introduced in order to improve further
the computational effort of BIE algorithm.
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